SAMPLE PAPER - II

SECTION - A (1 mark questions)

1. Solve for
$$x \begin{bmatrix} 1 & x \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = 0$$

- 2. If A and B are symmetric matrices show that AB-BA is skew symmetric matrix
- **3.** Find the value of k if the matrix $\begin{bmatrix} k & 1 \\ 2 & -4 \end{bmatrix}$ is singular
- **4.** If A and B are two events such that P(A)=0.3; P(B)=0.2 and $P(A \cap B)=0.05$. Are A and B independent events?
- **5.** Given that $P(\overline{A}) = 0.4$; P(B) = 0.2 and P(A/B) = 0.5, find $P(A \cap B)$
- **6.** Find the projection of $\vec{a} = 2\hat{i} \hat{j} + \hat{k}$ on $\vec{b} = \hat{i} 2\hat{j} + \hat{k}$

SECTION - B (4 marks questions)

7. Form the differential equation representing the family of ellipses having foci on the *y*-axis and centre at the origin.

OR

Solve the differential equation
$$\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}$$

- **8.** Find the general solution of the differential equation $\frac{dy}{dx} + y = 1, y \neq 1$
- 9. Using properties of determinants prove that

$$\begin{vmatrix} 1+a^{2}-b^{2} & 2ab & -2b \\ 2ab & 1-a^{2}+b^{2} & 2a \\ 2b & -2a & 1-a^{2}-b^{2} \end{vmatrix} = (1+a^{2}+b^{2})^{3}$$

- **10.** Write in the simplest form $\tan \left[\frac{1}{2} \sin^{-1} \left(\frac{2x}{1+x^2} \right) + \frac{1}{2} \cos^{-1} \left(\frac{1-y^2}{1+y^2} \right) \right]$
- **11.** For any two vectors \vec{a} and \vec{b} prove the triangle inequality $|\vec{a} + \vec{b}| \le |\vec{a}| + |\vec{b}|$ OR If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$; and $\vec{b} = \hat{j} \hat{k}$ then find a vector \vec{c} such that $\vec{a} \times \vec{c} = \vec{b}$ and $\vec{a} \cdot \vec{c} = \vec{3}$

- **12.**Find the intervals in which the function f given by $f(x) = x^3 + \frac{1}{x^3}, x \neq 0$ is increasing (ii) decreasing
- **13.**Differentiate $y = \sqrt{\frac{(x-3)(x^2+4)}{3x^2+4x+5}}$ with respect to x
- **14.**Find $\frac{d^2y}{dx^2}$, when $x = a(\cos\theta + \theta\sin\theta)$, and, $y = a(\sin\theta \theta\cos\theta)$

OR Using Mean Value Theorem find a point on the parabola $y = (x-3)^2$ where the tangent is parallel to the chord joining (3,0) and (5,4)

- **15.**Evaluate $\int \frac{1}{3x^2 + 13x 10} dx$
- **16.** Evaluate $\int_{2}^{8} |x-5| dx$, by using properties of definite integrals
- **17.** Prove that $\int_{0}^{\pi} \frac{x}{1+\sin x} dx = \pi \quad \text{OR} \quad \text{Evaluate } \int \frac{xe^{x}}{(x+1)^{2}} dx$
- **18.**An urn contains 4 red and 3 blue balls. Find the probability distribution of the number of blue balls in a random draw of 3 balls, one by one with replacement.
- **19.**A company has two plants to manufacture machines. Plant A manufactures 70% and plant B manufactures 30% machines. At plant A, 80% machines are rated of standard quality and at plant B, 90% machines are rated of standard quality. A machine is chosen at random and is found to be of standard quality. What is the probability that it was manufactured by plant A?

SECTION - C (6 mark questions)

- **20.**Consider $f: \mathbb{R}_+ \to [-5, \infty]$ given by $f(x) = 9x^2 + 6x 5$. Show that f is invertible .find the inverse of f.
- **21.** Find the inverse of the matrix $\begin{bmatrix} 1 & 3 & -2 \\ -3 & 0 & -5 \\ 2 & 5 & 0 \end{bmatrix}$ using elementary row transformation. OR

Using matrices solve the system 2x-3y+5z=11; 3x+2y-4z=-5; x+y-2z=-3

- **22.** A jet of an enemy is flying along the curve $y=x^2+2$. A soldier is placed at the point (3,2). What is the nearest distance between the soldier and the jet?
 - OR An open box with a square base is to be made out of a given quantity of cardboard of area c^2 . Show that the maximum volume of the box is $\frac{c^3}{6\sqrt{3}}$

- **23.** Find the area of the smaller part of the circle $x^2 + y^2 = a^2$ cut off by the line $x = \frac{a}{\sqrt{2}}$
- **24.**Two go downs A and B have grain capacity of 100 quintals and 50 quintals respectively. They supply to 3 ration shops, D, E and F whose requirements are 60, 50 and 40 quintals respectively. The cost of transportation per quintal from the godowns to the shops are given in the following table:

Transportation cost per quintal (in Rs)		
From/To	A	В
D	6	4
Е	3	2
F	2.50	3

How should the supplies be transported in order that the transportation cost is minimum? What is the minimum cost?

- **25.** Show that the lines $\frac{x+3}{-3} = \frac{y-1}{1} = \frac{z-5}{5}$; $\frac{x+1}{-1} = \frac{y-2}{2} = \frac{z-5}{5}$ are coplanar. Also find the equation of the plane containing the lines.
- **26.** Find the equation of the plane which contains the line of intersection of the planes $\vec{r}.(\hat{i}+2\hat{j}+3\hat{k})-4=0$ and $\vec{r}.(2\hat{i}+\hat{j}-\hat{k})+5=0$ and which is perpendicular to the plane $\vec{r}.(5\hat{i}+3\hat{j}-6\hat{k})+8=0$